The Problem of Blow-up in Nonlinear Parabolic Equations
نویسندگان
چکیده
The course aims at presenting an introduction to the subject of singularity formation in nonlinear evolution problems usually known as blowup. In short, we are interested in the situation where, starting from a smooth initial configuration, and after a first period of classical evolution, the solution (or in some cases its derivatives) becomes infinite in finite time due to the cumulative effect of the nonlinearities. We concentrate on problems involving differential equations of parabolic type, or systems of such equations. A first part of the course introduces the subject and discusses the classical questions addressed by the blow-up theory. We propose a list of main questions that extends and hopefully updates on the existing literature. We also introduce extinction problems as a parallel subject. In the main bulk of the paper we describe in some detail the developments in which we have been involved in recent years, like rates of growth and pattern formation before blow-up, the characterization of complete blow-up, the occurrence of instantaneous blow-up (i.e., immediately after the initial moment) and the construction of transient blow-up patterns (peaking solutions), as well as similar questions for extinction. In a final part we have tried to give an idea of interesting lines of current research. The survey concludes with an extensive list of references. Due to the varied and intense activity in the field both aspects are partial, and reflect necessarily the authors’ tastes.
منابع مشابه
A note on blow-up in parabolic equations with local and localized sources
This note deals with the systems of parabolic equations with local and localized sources involving $n$ components. We obtained the exponent regions, where $kin {1,2,cdots,n}$ components may blow up simultaneously while the other $(n-k)$ ones still remain bounded under suitable initial data. It is proved that different initial data can lead to different blow-up phenomena even in the same ...
متن کاملA note on critical point and blow-up rates for singular and degenerate parabolic equations
In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...
متن کاملBLOW-UP AND NONGLOBAL SOLUTION FOR A FAMILY OF NONLINEAR HIGHER-ORDER EVOLUTION PROBLEM
In this paper we consider a kind of higher-order evolution equation as^{kt^{k} + ^{k&minus1}u/t^{k&minus1} +• • •+ut &minus{delta}u= f (u, {delta}u,x). For this equation, we investigate nonglobal solution, blow-up in finite time and instantaneous blow-up under some assumption on k, f and initial data. In this paper we employ the Test function method, the eneralized convexity method an...
متن کاملBlow-up and global existence profile of a class of fully nonlinear degenerate parabolic equations
This paper is mainly concerned with the blow-up and global existence profile for the Cauchy problem of a class of fully nonlinear degenerate parabolic equations with reaction sources. MSC: 35B33, 35B40, 35K65, 35K55
متن کاملOn the Approximation of Blow-up Time for Solutions of Nonlinear Parabolic Equations
There are many nonlinear parabolic equations whose solutions develop singularity in finite time, say T. In many cases, a certain norm of the solution tends to infinity as time t approaches T. Such a phenomenon is called blow-up, and T is called the blow-up time. This paper is concerned with approximation of blow-up phenomena in nonlinear parabolic equations. For numerical computations or for ot...
متن کاملSufficient Conditions for Nonexistence of Gradient Blow-up for Nonlinear Parabolic Equations
In this paper we study the initial-boundary value problems for nonlinear parabolic equations without Bernstein-Nagumo condition. Sufficient conditions guaranteeing the nonexistence of gradient blow-up are formulated. In particular, we show that for a wide class of nonlinearities the Lipschitz continuity in the space variable together with the strict monotonicity with respect to the solution gua...
متن کامل